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Preface to Volume 1

One cannot study any physical system for very long before finding regularities
or symmetries which demand explanation and, even though the sy: etn may be
complex, one expects that the regularities will have a simple expla: ation. This
basic optimism, which pervades not only physics but science i general, is
justified in the case of symmetries because there is a theory of sym: ietry which
has application in almost all branches of physics and especially | 1 quantum
physics. The object of our book is to describe the theory of symr- ztry and to
study its applications in a wide variety of physical systems.

The book has grown out of several lecture courses which we hi ve given at
the University of Sussex during the past ten years. One wa: general
introductory course on symmetry given to third-year undergrad. afes, one a
postgraduate course on symmetry in solid-state physics and « ¢ a post-
graduate course on symmetry in atomic, nuclear and element; ry-particle
physics. As a result, the book may be used by students in a- y of these
categories. We regard chapters 1-5 (inclusive) as a minimum select on for any
student wishing to study symmetry, although those students wha 1ave taken
an undergraduate course on linear algebra will find that much of  hapter 3 is
familiar and may be read quite rapidly. The remaining chapters 6-1. in volume
I cover a wide range of applications which is quite sufficiint for an
undergraduate course. One could even be selective within the first volume by
omitting chapters 10-12 on nuclear and elementary particle shysics or

xvii

14
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alternatively by omitting chapters 6 and 9 on the point groups. We would
expect the second volume to be used for serious study at the postgraduate levei
and for occasional reference by the more inquisitive undergraduate,

The first chapter of volume 1 introduces the concept of symmetry with some
very simple examples and lists the general consequences. We then leave physics
aside for three chapters while preparing the mathematical tools to be used
later. The most important of these are group theory and linear algebra which
are described in chapters 2 and 3. The fourth chapter brings together these two
ideas in a study of group representations and it is this aspect of group theory
which is most used in the theory of symmetry. We return to physics inchapter 5
with a brief summary of the basic ideas of quantum mechanics and a general
description of the effects of symmetry in quantum systems. The remainder of
the book is concerned with applications to different physical systems and the
study in greater detail of the relevant groups. We cover a broad range of
applications from melecular vibrations to elementary particles and in each
case we aim to introduce sufficient background description to enable the
reader who has no prier knowledge of that particular physical system to
appreciate the role being played by symmetry. Each application is reasonably
self-contained and the more. sophisticated systems are left antil the later
chapters. The vibration of molecules is the first phenomenon studied in detail,
in chapter 6, and here we are able to illustrate the results of symmetry in classi-
cal mechanics before going over to the quantised theory. Chapters 7 and 8§
describe the symmetry with respect to rotations with applications to the
structure of atoms. It is here that we meet for the first time a continuous group,
with an infinite number of elements, or symmetry operations, and the general
properties of such groups are described. Chapter 9 describes in some detail the
‘point groups’, which contain only a finite number of rotations. and uses them
to study the influence of a crystal field on atomic states. In chapters 10, 1 and
12 we move on to the more abstract symmetries encountered in nuclear and
elementary particle physics but make use of the same general theory that was
used for the more concrete applications in earlier chapters, We introduce the
groups of unitary transformations in two, three, four and six dimensions and
use them to describe the observed symmetry between neutrons and protons
and the regularities amongst some of the recently discovered short-lived
elementary particles. The ideas of ‘strangeness’ and ‘quarks’ are explained.

Volume 2 begins with a further application of the use of ‘point groups—to
the motion of electrons in a molecule—and then, in chapter 14, moves away
from symmetries with a fixed point to study discrete translations and their
applications to crystal structure. The theory of relativity is of profound
importance in the philosophy of physics and, when speeds become comparable
with that of light, it has practical importance. For all the systems discussed in
volume 1 we are able to ignore relativity because the speeds of the particles
mnvolved are sufficiently small. Chapter 15 describes the symmetry in four-
dimensional space—time which is the origin of relativity theory and discusses its
consequences, cspecially in relation to the classification of tlementary

15
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Preface Xix

particles. The concepts of momentum, energy, mass and spinare int¢: preted in
terms of symmetry using the Lorentz and Poincaré groups and a na: iral place
is found in the theory for particles, like the photon, with zero mass. ( aapter 16
is concerned with fields, in contrast to the earlier chapters which ¢ ealt with
particles or systems of particles. We first describe classical fields, si ch as the
electromagnetic field. using four-dimensional space—time. This is fol »wedbya ;
brief account of the theory of relativistic quantum fields which 1 rovides a |
framework for the creation and annihilation of particles and the e sience of
antiparticles. Chapters 17 and 18 contain details of two general gioups, the
‘symmetric’ group of all permutations of 7 objects and the ‘unitary’; “cup inN i
dimensions, and an intimate relation between these two groups is liscussed. )
Particular cases of these two groups have been met earlier. C apter 19
describes some unexpecled symmetries in two familiar potentials, he Coul-
omb and the harmonic oscillator potentials, and a number > small,
unconnected, but interesting topics are collected into the last cha ter. 3
The text includes worked examples and a selection of probl:ms with ’
solutions. A bibliography of references for further reading is givenat he end of
each chapter for those who wish either to follow the physical applic: :icns into
more detail or to study some of the mathematical questions to a gre: ler depth.
To aid the reader we have followed the standard convention of 1. sing italic
type for algebraic symbols such as x, y and z, whereas opeiators are
distinguished by the use of roman type. An operator or matrix willb: written T
but its matrix elements Tj, which are numbers, will be in itali type. In
addition, bold face lype will be used for vectors and in chapters 15 and 16 of
volume 2 we meet four-vectors & which are printed with a circun flex.

Brighton, Sussex, 1979 ]. P E.
i.G. D

16



JAN. 22,2003

3 46PN

U € PHYSICS NO. 6504 P 17

T

Introduction

1.1 The place of symmetry in physics

According to the Concise Oxford Dictionary, symmetry is define: as ‘(Beauty
resulting from) right proportion between the parts of the body « - any whole,
balance, congruity, harmony, keeping’. Although there is much ¢ mplex detail
in physics there is also much beauty and simplicity and it is the ymmetry in
physical laws and physical systems which is largely respons. sle for this.
Consequently, symmetry plays an important role in physics and »ne which is
increasing in importance with modern developments. It is the pu pose of this
book to explain in general terms why the existence of symmeti y Jeads 1o a
variety of physical simplicities in both classical and quantum . :chanics. To
illustrate the general results we shall refer to simple properties - f molecules,
erystals, atoms, nuclei and elementary particles. Although th :se physical
systems are so obviously different from one another, neverthel s¢ the same
theory of symmetry may be applied to them all. The study ¢« * symmetry,
therefore, helps to unify physics by emphasising the simila: ty between
different fields.

It 15 true that symmetry plays a part in both classical and quar urn physics,
but it is in the latter that most interest lies. There are several rea: ons for this.
The first is that there is a much greater scope for symmetry t¢ exist in the
microscopic domain since, for example, onc electron is identical w. i any other

1

17
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2 Introduction 1.1

electron and one atom of carbon (say) is identical with any other. The second
reason is that at the microscopic level one must use quantum mechanics which
is inherently more complicated than classical mechanics and so provides more
scope for simplification through symmetry arguments. For example, a particle
is described by a wave function rather than a single position. One further
reason is that the structure of atomic and subatomic systems is now one of the
exciling frontiers of science and the ideas of symmetry are helping to create
order out of apparcnt chaos.

Throughout physics one uses mathematics as the tool with which to in-
vestigate the consequences of some assumed theory or model. For example, in
the motion of a particle of mass M in one dimension x under some force fix)
the physical law (Newtonian theory) tells us that fix) = M (d®x/d:?). To
find the position x(t), as a function of time, given f{x), we must solve this
differential equation, putting in the initial values of x and dx/dt. Thus, in
Newtonian mechanics, the differential and integral calculus is the appropriate
tool. In studying the symmetry of physical systems we are asking about their
behaviour under transformations. For example, if a particle moves in one
dimension under the influence of a potential ¥(x), that potential may have
reflection symmetry in the origin, t.e. ¥(—x) = V(x}. In this case the potential
is said to be invariant (unchanged) under the transformation which replaces x
by —x. In another example, that of a particle moving in three dimensions, the
potential may have spherical symmetry, which means that, in spherical polar
coordinates, the potential is independent of angle and may be written ¥(r). In
this case the potential is invariant under any of the transformations which
rotate through any angle about any axis through the origin—an infinite
number of transformations!

To investigate the physical consequences of the symmetry of a system we
must, therefore, learn something about transformatiens and in particular
about the set (collection) of transformations which leave some function, like
the potential, invariant. The theory of such sets of transformations is called
‘group theory’ by mathematicians and this is the appropriate tool for the
physicist to use in studying symmetry.

It is fascinating to draw an analogy between the use of calculus in classical
mechanics and the use of group theory in quantum mechanics. Historically the
discovery of Newton’s laws and the invention of the calculus occurred at about
the same time in the seventeenth century. Although the ideas of group theory
were introduced into mathematics as early as 1810 it was not until the 1920s
that the theory of group representations, which is crucial to the study of
symmetry, was developed. This was the very time when physicists were
formulating the quantum theory. In fact the significance of symmetry in
quantum mechanics was realised very early in the classic works of E. Wigner, in
1931, H. Weyl, in 1928, and Van-der-Waerden, in 1932.

There have always been those who have argued that it is unnecessary to use
group theory in quantum mechanics. In a sense this is true, since group theory
itself is built from elementary algebraic steps. However, the investment of
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effort in learning to use the sophisticated tool which is group ! 1eory is soon
rewarded by handsome dividends of simplification and unificatic 1 in the study
of complex quantum mechanical systems. After all, one could : rgue that the
calculus is not necessary in classical mechanics. For exampl! peometrical
arguments could be used to show that the inverse square law o’ gravitational
attraction leads to elliptical orbits. In fact, Newton originally used such a
method but in modern times we understand this result througl the solution
of a differential equation. Looking ahead, it is exciting to s| eculate that
further major advances in mathematics and physics may go ha: d in hand in
the future.

1.2 Examples of the consequences of symietry

To whet the appetite we now list a number of physical systems v hich possess
symmetry and we point out some [eatures of their behaviour wt. ch are direct
consequences of the symmetry. Simpler examples are given first, Although in
some cases we are able to relate the behaviour to the symm. itry without
developing new methods this is, of course, not always possible. It i; the purpose
of this book to describe generally the consequences of symmetry 1 1d it will not
be until much later in the book that we shall be ina position to un: erstand and
to predict the behaviour of systems with intricate symmetries.

1.21 One particle in one dimension (classical)

A particle of mass M, moving in one dimension under the i Auence of a
potential ¥(x), wilt have its motion governed by the equation

M = —d¥V/dx (1.1)
Suppose now that ¥(x)is a constant, independent of x: in other w: rds that it is

invariant under translation. Then clearly M% = 0 and, integratin 1, gives Mx
= C, showing the conservation (constancy) of linear momentun Mx.

1.2.2 One particle in two dimensions (classical)
In two dimensions the motion of the particle is governed >y the two
equations
M%=—@V/dx and MJ= —3V/dy (1.2)
Suppose now that ¥(x, y) is invariant with respect to rotation abor t the origin;
in other words that V(x, y) is independent of the polar angle 8 if « xpressed in

terms of the polar coordinates r, @ rather than the cartesian x and 3 In this case
aV /0 = 0. However,

oV dx 6V‘+0y oV _ 6‘V+x6_V
30 30 ox 80 ay  ox '8y
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and using equation (1.2)

av Mo v . d . ,

2 = (yx—xy) = Ma(yx—xy)

so that the invariance dV/80 = 0 implies thc constancy of the quantity
M(yx —xy) which is the moment of momentum (or angular momentum)
about an axis through the origin and perpendicular to the plane.

If the particle were [ree to move in three dimenstons in a potential which was
invariant with respect to rotations about any axis then this argument shows
that any component of the angular momentum is constant. In other words, for
a spherically symmetric potential, both the magnitude and the direction of the
angular momentum are conserved.

1.2.3 Two particles connected by springs (classical)

Two particles of equal mass M are connccted te each other and to fixed
supports by equal collinear springs with spring constant A. Let the natural
length of the springs be a and the supports a distance 3a apart. Denote the
displacements of the two particles from their equilibrium positions by x,and
x,. Although the general displacement, illustrated in figure 1.1, has no
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Figure 1.1

symmetry it is intuitively clear that, in some sense, the system has reflection
symmetry about the centre. In fact, both the kinetic and potential energies

T=3iM(x}+%3) and ¥ =JA{x+xi+(e+x)?)

are invariant with respect to the interchange of x, and x,, which is the
transformation of coordinates x, and x, produced by a reflection in the line
AB.

The consequences of symmetry are not very dramatic in this case, but the
generalisation to the vibration of atoms abeut their equilibrium positions in
a molecule is of considerable importance. It is therefore worth while to solve
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